The K-level crossings of a random algebraic polynomial with dependent coefficients
Jeffrey Matayoshi
Statistics & Probability Letters, 2012, vol. 82, issue 1, 203-211
Abstract:
For a random polynomial with standard normal coefficients, two cases of the K-level crossings have been considered by Farahmand. For independent coefficients, Farahmand derived an asymptotic value for the expected number of level crossings, even if K grows to infinity. Alternatively, he showed that coefficients with a constant covariance have half as many crossings. Given these results, the purpose of this paper is to study the behavior for dependent standard normal coefficients where the covariance is decaying. Using similar techniques to Farahmand, we will show that for a wide range of covariance functions behavior similar to the independent case can be expected.
Keywords: Random polynomials; Level crossings; Dependent coefficients (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715211003130
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:82:y:2012:i:1:p:203-211
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2011.09.019
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().