A bias corrected nonparametric regression estimator
Weixin Yao
Statistics & Probability Letters, 2012, vol. 82, issue 2, 274-282
Abstract:
In this article, we propose a new method of bias reduction in nonparametric regression estimation. The proposed new estimator has asymptotic bias order h4, where h is a smoothing parameter, in contrast to the usual bias order h2 for the local linear regression. In addition, the proposed estimator has the same order of the asymptotic variance as the local linear regression. Our proposed method is closely related to the bias reduction method for kernel density estimation proposed by Chung and Lindsay (2011). However, our method is not a direct extension of their density estimate, but a totally new one based on the bias cancelation result of their proof.
Keywords: Bias reduction; Local linear regression; Nonparametric regression; Nonlinear smoother (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715211003270
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:82:y:2012:i:2:p:274-282
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2011.10.006
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().