A simple extension of boosting for asymmetric mislabeled data
Kenichi Hayashi
Statistics & Probability Letters, 2012, vol. 82, issue 2, 348-356
Abstract:
This letter provides a simple extension of boosting methods for binary data where the probability of mislabeling depends on the label of an example. Loss functions are derived from the statistical perspective, which is based on likelihood analysis. Our proposed methods can be interpreted as a correction of the decision boundary of observed labels. This interpretation partially relates to cost-sensitive learning, a classification method for the case in which the ratio of two labels in a dataset is skewed. Numerical experiments show that the proposed methods work well for asymmetric mislabeled data even when the probabilities of mislabeling may not be precisely specified.
Keywords: Asymmetric mislabeling mechanism; Bayes error rate; Boosting; Classification (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016771521100335X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:82:y:2012:i:2:p:348-356
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2011.10.014
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().