Convergence rate for predictive recursion estimation of finite mixtures
Ryan Martin
Statistics & Probability Letters, 2012, vol. 82, issue 2, 378-384
Abstract:
Predictive recursion (PR) is a fast stochastic algorithm for nonparametric estimation of mixing distributions in mixture models. It is known that the PR estimates of both the mixing and mixture densities are consistent under fairly mild conditions, but currently very little is known about the rate of convergence. Here I first investigate asymptotic convergence properties of the PR estimate under model misspecification in the special case of finite mixtures with known support. Tools from stochastic approximation theory are used to prove that the PR estimates converge, to the best Kullback–Leibler approximation, at a nearly root-n rate. When the support is unknown, PR can be used to construct an objective function which, when optimized, yields an estimate of the support. I apply the known-support results to derive a rate of convergence for this modified PR estimate in the unknown support case, which compares favorably to known optimal rates.
Keywords: Density estimation; Kullback–Leibler divergence; Lyapunov function; Mixture model; Stochastic approximation (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715211003440
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:82:y:2012:i:2:p:378-384
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2011.10.023
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().