EconPapers    
Economics at your fingertips  
 

Prior influence in linear regression when the number of covariates increases to infinity

Luis Leon-Novelo and George Casella

Statistics & Probability Letters, 2012, vol. 82, issue 3, 438-445

Abstract: It is becoming more typical in regression problems today to have the situation where “p>n”, that is, where the number of covariates is greater than the number of observations. Approaches to this problem include such strategies as model selection and dimension reduction, and, of course, a Bayesian approach. However, the discrepancy between p and n can be so large, especially in genomic data, that examining the limiting case where p→∞ can be a relevant calculation. Here we look at the effect of a prior distribution on the coefficients, and in particular characterize the conditions under which, as p→∞, the prior does not overwhelm the data. Specifically, we find that the prior variance on the growing number of covariates must approach zero at rate 1/p, otherwise the prior will overwhelm the data and the posterior distribution of the regression coefficient will equal the prior distribution.

Keywords: Linear models; Regression; Bayes; Model selection (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715211003397
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:82:y:2012:i:3:p:438-445

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spl.2011.10.018

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:82:y:2012:i:3:p:438-445