EconPapers    
Economics at your fingertips  
 

A theory for the multiset sampler

Yuguo Chen

Statistics & Probability Letters, 2012, vol. 82, issue 3, 473-477

Abstract: The multiset sampler (MSS) can be viewed as a new data augmentation scheme and it has been applied successfully to a wide range of statistical inference problems. The key idea of the MSS is to augment the system with a multiset of the missing components, and construct an appropriate joint distribution of the parameters of interest and the missing components to facilitate the inference based on Markov chain Monte Carlo. The standard data augmentation strategy corresponds to the MSS with multiset size one. This paper provides a theoretical comparison of the MSS with different multiset sizes. We show that the MSS converges to the target distribution faster as the multiset size increases. This explains the improvement in convergence rate for the MSS with large multiset sizes over the standard data augmentation scheme.

Keywords: Data augmentation; Evolutionary forest algorithm; Forward operator; Gibbs sampler; Markov chain Monte Carlo (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715211003695
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:82:y:2012:i:3:p:473-477

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spl.2011.09.025

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:82:y:2012:i:3:p:473-477