Absolutely continuous measure for a jump-type Fleming–Viot process
Telles Timóteo da Silva and
Marcelo Dutra Fragoso
Statistics & Probability Letters, 2012, vol. 82, issue 3, 557-564
Abstract:
In this paper, we prove that the random measure of the one-dimensional jump-type Fleming–Viot process is absolutely continuous with respect to the Lebesgue measure in R, provided the mutation operator satisfies certain regularity conditions. This result is an important step towards the representation of the Fleming–Viot process with jumps in terms of the solution of a stochastic partial differential equation.
Keywords: Jump-type Fleming–Viot process; Absolute continuity; Martingale methods (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715211003786
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:82:y:2012:i:3:p:557-564
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2011.11.024
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().