Exact asymptotics of supremum of a stationary Gaussian process over a random interval
Marek Arendarczyk and
Krzysztof Dȩbicki
Statistics & Probability Letters, 2012, vol. 82, issue 3, 645-652
Abstract:
Let {X(t):t∈[0,∞)} be a centered stationary Gaussian process. We study the exact asymptotics of P(sups∈[0,T]X(s)>u), as u→∞, where T is an independent of {X(t)} nonnegative random variable. It appears that the heaviness of T impacts the form of the asymptotics, leading to three scenarios: the case of integrable T, the case of T having regularly varying tail distribution with parameter λ∈(0,1) and the case of T having slowly varying tail distribution.
Keywords: Asymptotics; Gaussian process; Supremum distribution (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715211003683
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:82:y:2012:i:3:p:645-652
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2011.11.015
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().