Some geometric mixed integer-valued autoregressive (INAR) models
Aleksandar S. Nastić and
Miroslav M. Ristić
Statistics & Probability Letters, 2012, vol. 82, issue 4, 805-811
Abstract:
In this paper, we introduce some mixed integer-valued autoregressive models of orders 1 and 2 with geometric marginal distributions, denoted by MGINAR(1) and MGINAR(2), using a mixture of the well-known binomial and the negative binomial thinning. The distributions of the innovation processes are derived and several properties of the model are discussed. Conditional least squares and Yule–Walker estimators are obtained, and some numerical results of the estimations are presented. A real-life data example is investigated to assess the performance of the models.
Keywords: INAR(1) models; INAR(2) models; Binomial thinning; Negative binomial thinning; Geometric marginal distribution (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016771521200017X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:82:y:2012:i:4:p:805-811
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2012.01.007
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().