Classification loss function for parameter ensembles in Bayesian hierarchical models
Cedric E. Ginestet,
Nicky G. Best and
Sylvia Richardson
Statistics & Probability Letters, 2012, vol. 82, issue 4, 859-863
Abstract:
In this note, we consider the problem of classifying the elements of a parameter ensemble from a Bayesian hierarchical model as above or below a given threshold, C. Two threshold classification losses (TCLs)–termed balanced TCL and p-weighted TCL, respectively–are formulated. The p-weighted TCL can be used to prioritize the minimization of false positives over false negatives or the converse. We prove that, as a special case of a more general result, the p-weighted and balanced TCLs are optimized by the ensembles of unit-specific posterior (1−p)-quantiles and posterior medians, respectively. In addition, we also relate these classification loss functions on parameter ensembles to the concepts of posterior sensitivity and specificity. Finally, we discuss the potential applications of balanced and p-weighted TCLs in Bayesian hierarchical models, and how TCLs could be used to extend existing loss functions currently used for point estimation in parameter ensembles.
Keywords: Classification; Decision theory; Epidemiology; Sensitivity; Specificity (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016771521100407X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:82:y:2012:i:4:p:859-863
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2011.12.015
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().