Semicircle law of Tyler’s M-estimator for scatter
Gabriel Frahm and
Konstantin Glombek
Statistics & Probability Letters, 2012, vol. 82, issue 5, 959-964
Abstract:
This paper analyzes the spectral properties of Tyler’s M-estimator for scatter Tn,d. It is shown that if a multivariate sample stems from a generalized spherically distributed population and the sample size n and the dimension d both go to infinity while d/n→0, then the empirical spectral distribution of n/d(Tn,d−Id), Id being the identity, converges in probability to the semicircle law. In contrast to that of the sample covariance matrix, this convergence does not necessarily require the sample vectors to be componentwise independent. Further, moments of the generalized spherical population do not have to exist.
Keywords: Tyler’s M-estimator; Random matrix; Spectral distribution; Semicircle law (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715212000272
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:82:y:2012:i:5:p:959-964
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2012.01.017
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().