EconPapers    
Economics at your fingertips  
 

A sharp upper bound for the expected number of false rejections

Alexander Y. Gordon

Statistics & Probability Letters, 2012, vol. 82, issue 8, 1507-1514

Abstract: We consider the class of monotone multiple testing procedures (monotone MTPs). It includes, among others, traditional step-down (Holm type) and step-up (Benjamini–Hochberg type) MTPs, as well as their generalization–step-up-down procedures (Tamhane et al., 1998). Our main result–the All-or-Nothing Theorem–allows us to explicitly calculate, for each MTP in those classes, its per-family error rate–the exact level at which the procedure controls the expected number of false rejections under general and unknown dependence structure of the individual tests. As an illustration, we show that, for any monotone step-down procedure (where the term “step-down” is understood in the most general sense), the ratio of its per-family error rate and its familywise error rate (the exact level at which the procedure controls the probability of one or more false rejections) does not exceed 4 if the denominator is less than 1.

Keywords: Multiple testing procedure; Monotone procedure; Per-family error rate; Step-down procedure; Step-up procedure (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715212000806
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:82:y:2012:i:8:p:1507-1514

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spl.2012.03.008

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:82:y:2012:i:8:p:1507-1514