EconPapers    
Economics at your fingertips  
 

On efficient estimation of densities for sums of squared observations

Anton Schick and Wolfgang Wefelmeyer

Statistics & Probability Letters, 2012, vol. 82, issue 9, 1637-1640

Abstract: Densities of functions of independent and identically distributed random observations can be estimated by using a local U-statistic. Under an appropriate integrability condition, this estimator behaves asymptotically like an empirical estimator. In particular, it converges at the parametric rate. The integrability condition is rather restrictive. It fails for the sum of powers of two observations when the exponent is at least 2. We have shown elsewhere that for the exponent equal to 2 the rate of convergence slows down by a logarithmic factor in the support of the squared observation. Here we show that the estimator is efficient in the sense of Hájek and LeCam. In particular, the convergence rate is optimal.

Keywords: Local asymptotic normality; Regular estimator; Nonstandard convergence rates (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715212001642
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:82:y:2012:i:9:p:1637-1640

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spl.2012.04.021

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:82:y:2012:i:9:p:1637-1640