On efficient estimation of densities for sums of squared observations
Anton Schick and
Wolfgang Wefelmeyer
Statistics & Probability Letters, 2012, vol. 82, issue 9, 1637-1640
Abstract:
Densities of functions of independent and identically distributed random observations can be estimated by using a local U-statistic. Under an appropriate integrability condition, this estimator behaves asymptotically like an empirical estimator. In particular, it converges at the parametric rate. The integrability condition is rather restrictive. It fails for the sum of powers of two observations when the exponent is at least 2. We have shown elsewhere that for the exponent equal to 2 the rate of convergence slows down by a logarithmic factor in the support of the squared observation. Here we show that the estimator is efficient in the sense of Hájek and LeCam. In particular, the convergence rate is optimal.
Keywords: Local asymptotic normality; Regular estimator; Nonstandard convergence rates (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715212001642
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:82:y:2012:i:9:p:1637-1640
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2012.04.021
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().