Almost sure exponential stability of the θ-method for stochastic differential equations
Lin Chen and
Fuke Wu
Statistics & Probability Letters, 2012, vol. 82, issue 9, 1669-1676
Abstract:
Our previous work shows that the backward Euler–Maruyama (BEM) method may reproduce the almost sure stability of stochastic differential equations (SDEs) without the linear growth condition for the drift coefficient (see Wu et al. (2010)) but the Euler–Maruyama (EM) method cannot. It is well known that the θ-method is more general and may be specialized as the BEM and EM by choosing θ=1 and θ=0. Then it is very interesting to examine the interval in which the θ-method holds the same stability property as the BEM method. This paper shows that when θ∈(1/2,1], the θ-method may reproduce the almost sure stability of the exact solution of SDEs. Finally, a two-dimensional example is presented to illustrate this result.
Keywords: Stochastic differential equations; Almost sure exponential stability; θ-method; Semimartingale convergence theorem; One-sided linear growth (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715212001691
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:82:y:2012:i:9:p:1669-1676
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2012.05.004
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().