Survivors in leader election algorithms
Ravi Kalpathy,
Hosam M. Mahmoud and
Walter Rosenkrantz
Statistics & Probability Letters, 2013, vol. 83, issue 12, 2743-2749
Abstract:
We consider the number of survivors in a broad class of fair leader election algorithms after a number of election rounds. We give sufficient conditions for the number of survivors to converge to a product of independent identically distributed random variables. The number of terms in the product is determined by the round number considered. Each individual term in the product is a limit of a scaled random variable associated with the splitting protocol. The proof is established via convergence (to 0) of the first-order Wasserstein distance from the product limit. In a broader context, the paper is a case study of a class of stochastic recursive equations. We give two illustrative examples, one with binomial splitting protocol (for which we show that a normalized version is asymptotically Gaussian) and one with uniform splitting protocol.
Keywords: Randomized algorithm; Leader election; Stochastic recurrence; Probability metrics; Weak convergence (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016771521300309X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:83:y:2013:i:12:p:2743-2749
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2013.09.011
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().