An empirical depth function for multivariate data
Min Tsao
Statistics & Probability Letters, 2013, vol. 83, issue 1, 213-218
Abstract:
We introduce an empirical depth function for multivariate data based on the empirical likelihood ratio for the mean. This empirical depth function is defined through the empirical distribution of a sample. It is centred on the sample mean and has continuous, smooth and convex contours which capture the shape of the data points. We also show that there is an asymptotic equivalence between the empirical depth and the Mahalanobis depth.
Keywords: Statistical depth function; Empirical likelihood; Mahalanobis depth (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715212003446
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:83:y:2013:i:1:p:213-218
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2012.09.007
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().