Bootstrap based model checks with missing binary response data
Gerhard Dikta,
Sundarraman Subramanian and
Thorsten Winkler
Statistics & Probability Letters, 2013, vol. 83, issue 1, 219-226
Abstract:
Dikta, Kvesic, and Schmidt proposed a model-based resampling scheme to approximate critical values of tests for model checking involving binary response data. Their approach is inapplicable when the binary response variable is not always observed, however. We propose a missingness adjusted marked empirical process under the framework that the missing binary responses are missing at random. We introduce a resampling scheme for the bootstrap and prove its asymptotic validity. We present some numerical comparisons and illustrate our methodology using a real data set.
Keywords: Covariance function; Functional central limit theorem; Maximum likelihood estimator; Continuous mapping theorem; Wild bootstrap (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715212003604
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:83:y:2013:i:1:p:219-226
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2012.09.014
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().