Markov processes on the adeles and Chebyshev function
Kumi Yasuda
Statistics & Probability Letters, 2013, vol. 83, issue 1, 238-244
Abstract:
Markov processes on the ring of adeles are constructed, as the limits of Markov chains on some countable sets consisting of subsets of the direct product of real and p-adic fields. As particular cases, we have adelic valued semistable processes. Then it is shown that the values of the Chebyshev function, whose asymptotics is closely related to the zero-free region of the Riemann zeta function, are represented by the expectation of the first exit time for these processes from the set of finite integral adeles.
Keywords: Markov processes; Adeles; Riemann zeta function (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715212003458
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:83:y:2013:i:1:p:238-244
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2012.09.008
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().