Error covariance matrix estimation using ridge estimator
June Luo and
K.B. Kulasekera
Statistics & Probability Letters, 2013, vol. 83, issue 1, 257-264
Abstract:
This article considers sparse covariance matrix estimation of high dimension. In contrast to the existing methods which are based on the residual estimation from least squares estimator, we utilize residuals from ridge estimator with the adaptive thresholding technique to estimate the error covariance matrix in high dimensional factor model. By obtaining the explicit convergence rates of the ridge estimator under regularity conditions, we formulated our thresholding estimator of the true covariance matrix. Our thresholding estimator can be applied to more scenarios and is shown to have comparable rate of convergence to Fan et al. (2011).
Keywords: High dimension; Error covariance matrix; Ridge estimation; Asymptotic property (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715212003483
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:83:y:2013:i:1:p:257-264
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2012.09.011
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().