On optimal confidence sets for parameters in discrete distributions
Joshua D. Habiger,
Melinda H. McCann and
Joshua M. Tebbs
Statistics & Probability Letters, 2013, vol. 83, issue 1, 297-303
Abstract:
In discrete distributions, the coverage probability and the expected length of an interval estimator often depend on the unknown parameter of interest. Some authors have suggested that “good” interval estimators should have mean coverage probability near the nominal level and small mean expected length, where the mean is taken over all possible values of the parameter. This paper uses these criteria to precisely define an optimal interval estimator and finds it in the single-parameter discrete distribution setting.
Keywords: Confidence interval; Coverage probability; Expected length (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715212003641
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:83:y:2013:i:1:p:297-303
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2012.09.018
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().