On waiting time distribution of runs of ones or zeros in a Bernoulli sequence
Sungsu Kim,
Chongjin Park and
Jungtaek Oh
Statistics & Probability Letters, 2013, vol. 83, issue 1, 339-344
Abstract:
Consider an infinite sequence of Bernoulli trials {Xi|i=1,2,…}. Let W(k) denote the waiting time, the number of trials needed, to get either consecutive k ones or k zeros for the first time. The probability distribution of W(k) is derived for both independent and homogeneous two-state Markovian Bernoulli trials, using a generalized Fibonacci sequence of order k. For independent Bernoulli trials, a special case of symmetric trial with p=12 is considered.
Keywords: Bernoulli sequences; Fibonacci sequences; Probability distribution function; Probability generating function; Sooner waiting time (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715212003732
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:83:y:2013:i:1:p:339-344
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2012.10.001
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().