On simple representations of stopping times and stopping time sigma-algebras
Tom Fischer
Statistics & Probability Letters, 2013, vol. 83, issue 1, 345-349
Abstract:
There exists a simple, didactically useful one-to-one relationship between stopping times and adapted càdlàg (RCLL) processes that are non-increasing and take the values 0 and 1 only. As a consequence, stopping times are always hitting times. Furthermore, we show how minimal elements of a stopping time sigma-algebra can be expressed in terms of the minimal elements of the sigma-algebras of the underlying filtration. This facilitates an intuitive interpretation of stopping time sigma-algebras. A tree example finally illustrates how these for students notoriously difficult concepts, stopping times and stopping time sigma-algebras, may be easier to grasp by means of our results.
Keywords: Début Theorem; Hitting time; Stopped sigma-algebra; Stopping time; Stopping time sigma-algebra (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715212003707
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:83:y:2013:i:1:p:345-349
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2012.09.024
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().