A Markov regime switching jump-diffusion model for the pricing of portfolio credit derivatives
Xue Liang,
Guojing Wang and
Yinghui Dong
Statistics & Probability Letters, 2013, vol. 83, issue 1, 373-381
Abstract:
The class of reduced form models is a very important class of credit risk models, and the modeling of the default dependence structure is essential in the reduced form models. This paper proposes a thinning-dependent structure model in the reduced form framework. The intensity process is the jump-diffusion version of the Vasicek model with the coefficients allowed to switch in different regimes. This article will investigate the joint (conditional) survival probability and the pricing formulas of portfolio credit derivatives. The exact analytical expressions are provided.
Keywords: Thinning-dependence structure; Regime switching; Jump-diffusion model; Joint conditional survival probability; Portfolio credit derivatives (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715212003756
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:83:y:2013:i:1:p:373-381
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2012.10.003
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().