On the Fourier structure of the zero set of fractional Brownian motion
Willem L. Fouché and
Safari Mukeru
Statistics & Probability Letters, 2013, vol. 83, issue 2, 459-466
Abstract:
In this paper, we consider a one-dimensional fractional Brownian motion X and the Fourier transform of its associated Dirac measure δ(X). It is a measure, canonically associated with X (in the sense of Schwartz’s theory of generalized functions). As was shown by Kahane, this measure reflects the fractal geometry of the zero set of X to a remarkable degree. One can also think of this measure as being given by the local time of X at 0. Kahane initiated the problem of understanding the Fourier structure of the zero sets of fractional Brownian motion. In this paper, we address this problem by analysing the even moments of the Fourier transform of the Dirac measure of a one-dimensional fractional Brownian motion restricted to compact intervals. We shall represent these moments by Fresnel-type oscillatory integrals. In the case of Brownian motion, the second-order moment reveals close connections with Bessel functions and Fresnel integrals.
Keywords: Fractional Brownian motion; Local times; Hausdorff dimension; Salem sets (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715212003872
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:83:y:2013:i:2:p:459-466
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2012.10.015
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().