Bounds on the Poincaré constant under negative dependence
Fraser Daly and
Oliver Johnson
Statistics & Probability Letters, 2013, vol. 83, issue 2, 511-518
Abstract:
We give bounds on the Poincaré (inverse spectral gap) constant of a non-negative, integer-valued random variable W, under negative dependence assumptions such as ultra log-concavity and total negative dependence. We show that the bounds obtained compare well to others in the literature. Examples treated include some occupancy and urn models, a random graph model and small spacings on the circumference of a circle. Applications to Poisson convergence theorems are considered.
Keywords: Poincaré constant; Total negative dependence; Ultra log-concavity; Size-bias transform; Stochastic ordering (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715212004087
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:83:y:2013:i:2:p:511-518
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2012.11.001
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().