EconPapers    
Economics at your fingertips  
 

A note on EM algorithm for mixture models

Weixin Yao

Statistics & Probability Letters, 2013, vol. 83, issue 2, 519-526

Abstract: Expectation–maximization (EM) algorithm has been used to maximize the likelihood function or posterior when the model contains unobserved latent variables. One main important application of EM algorithm is to find the maximum likelihood estimator for mixture models. In this article, we propose an EM type algorithm to maximize a class of mixture type objective functions. In addition, we prove the monotone ascending property of the proposed algorithm and discuss some of its applications.

Keywords: Adaptive regression; EM algorithm; Edge-preserving smoothers; Mode; Robust regression (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715212003896
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:83:y:2013:i:2:p:519-526

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spl.2012.10.017

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:83:y:2013:i:2:p:519-526