On orthogonality of (X+Y) and X/(X+Y) rather than independence
Barry C. Arnold and
Jose A. Villasenor
Statistics & Probability Letters, 2013, vol. 83, issue 2, 584-587
Abstract:
If X and Y are independent and if X+Y and X/(X+Y) are independent random variables, then X and Y must have gamma distributions. To confirm that lack of correlation between X and X/(X+Y) does not characterize the gamma distribution, a large class of distributions are identified for which cov[X,X/(X+Y)]=0. A related question in the context of matrix-variate distributions is addressed.
Keywords: Characterization; Covariance; Uncorrelated; Gamma distribution; Matrix variate (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715212004075
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:83:y:2013:i:2:p:584-587
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2012.10.035
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().