Does adding data always improve linear regression estimates?
A.V. den Boer
Statistics & Probability Letters, 2013, vol. 83, issue 3, 829-835
Abstract:
Intuitively one might expect that the quality of statistical estimates cannot worsen if they are based on more data. We show in a least-squares linear regression setting that this intuition is wrong. Adding data may worsen the quality of parameter estimates, and in fact may even cause a design sequence to lose strong consistency.
Keywords: Least-squares linear regression; Strong consistency; Inconsistency (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715212004506
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:83:y:2013:i:3:p:829-835
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2012.12.001
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().