On the integral of fractional Poisson processes
Enzo Orsingher and
Federico Polito
Statistics & Probability Letters, 2013, vol. 83, issue 4, 1006-1017
Abstract:
In this paper, we consider the Riemann–Liouville fractional integral Nα,ν(t)=1Γ(α)∫0t(t−s)α−1Nν(s)ds, where Nν(t), t≥0, is a fractional Poisson process of order ν∈(0,1], and α>0. We give the explicit bivariate distribution Pr{Nν(s)=k,Nν(t)=r}, for t≥s, r≥k, the mean ENα,ν(t) and the variance VarNα,ν(t). We study the process Nα,1(t) for which we are able to produce explicit results for the conditional and absolute variances and means. Much more involved results on N1,1(t) are presented in the last section where also distributional properties of the integrated Poisson process (including the representation as random sums) is derived. The integral of powers of the Poisson process is examined and its connections with generalized harmonic numbers are discussed.
Keywords: Mittag-Leffler generalized functions; Riemann–Liouville fractional integrals; Skellam distribution (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715212004750
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:83:y:2013:i:4:p:1006-1017
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2012.12.016
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().