EconPapers    
Economics at your fingertips  
 

An alternative REML estimation of covariance matrices in linear mixed models

Erning Li and Mohsen Pourahmadi

Statistics & Probability Letters, 2013, vol. 83, issue 4, 1071-1077

Abstract: We propose a data-driven procedure for modeling covariance matrices in linear mixed-effects models with minimal distributional assumption on the random effects. It is based on elimination of the random effects using a transformation of the response variable. The approach makes it possible for the first time to disentangle the covariance matrices and model them separately. The performance of the proposed method is assessed via simulations and real data.

Keywords: Cholesky decomposition; Covariance matrices; Longitudinal data; Mixed models; Restricted or residual maximum likelihood (REML) (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715212004877
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:83:y:2013:i:4:p:1071-1077

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spl.2012.12.028

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:83:y:2013:i:4:p:1071-1077