Probability inequalities for bounded random vectors
I.A. Ahmad and
M. Amezziane
Statistics & Probability Letters, 2013, vol. 83, issue 4, 1136-1142
Abstract:
Probability inequalities are powerful tools that can be applied in many areas such as laws of large numbers, central limit theorem, law of iterated logarithm, deviation probabilities and asymptotics of inference problems. In this work, extensions of the basic inequalities of Bernstein, Kolmogorov and Hoeffding are given for the sums of bounded random vectors.
Keywords: Bounded random vectors; Probability inequalities; Bernstein inequality; Kolmogorov inequality; Hoeffding inequality (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715212004397
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:83:y:2013:i:4:p:1136-1142
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2012.11.023
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().