Estimation of nonparametric regression models with a mixture of Berkson and classical errors
Zanhua Yin,
Wei Gao,
Man-Lai Tang and
Guo-Liang Tian
Statistics & Probability Letters, 2013, vol. 83, issue 4, 1151-1162
Abstract:
We consider the estimation of nonparametric regression models with the explanatory variable being measured with Berkson errors or with a mixture of Berkson and classical errors. By constructing a compact operator, the regression function is the solution of an ill-posed inverse problem, and we propose an estimation procedure based on Tikhonov regularization. Under mild conditions, the convergence rate of proposed estimator is derived. The finite-sample properties of the estimator are investigated through simulation studies.
Keywords: Berkson error; Classical error; Ill-posed problem; Non-parametric regression (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016771521300014X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:83:y:2013:i:4:p:1151-1162
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2013.01.013
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().