Integer valued stable random variables
Lev B. Klebanov and
Lenka Slámová
Statistics & Probability Letters, 2013, vol. 83, issue 6, 1513-1519
Abstract:
The aim of this paper is to define the notion of stability for random variables on Z. A definition of discrete stable distributions is introduced and we study properties of such distributions. The generating functions are given, as well as the probabilities of lattice distribution. We show how these distributions converge to classical stable distributions and thus can be considered as a discrete approximation of their absolutely continuous counterparts.
Keywords: Stable random variables; Discrete distributions (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016771521300059X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:83:y:2013:i:6:p:1513-1519
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2013.02.016
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().