A note on the relaxation time of two Markov chains on rooted phylogenetic tree spaces
David A. Spade,
Radu Herbei and
Laura S. Kubatko
Statistics & Probability Letters, 2014, vol. 84, issue C, 247-252
Abstract:
Phylogenetic trees are commonly used to model the evolutionary relationships among a collection of biological species. Over the past fifteen years, the convergence properties for Markov chains defined on phylogenetic trees have been studied, yielding results about the time required for such chains to converge to their stationary distributions. In this work we derive an upper bound on the relaxation time of two Markov chains on rooted binary trees: one defined by nearest neighbor interchanges (NNI) and the other defined by subtree prune and regraft (SPR) moves.
Keywords: Markov chains; Phylogenetic trees; Relaxation time; Distinguished paths (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715213003155
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:84:y:2014:i:c:p:247-252
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2013.09.017
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().