Optimal stopping in infinite horizon: An eigenfunction expansion approach
Lingfei Li and
Vadim Linetsky
Statistics & Probability Letters, 2014, vol. 85, issue C, 122-128
Abstract:
We develop an eigenfunction expansion based value iteration algorithm to solve discrete time infinite horizon optimal stopping problems for a rich class of Markov processes that are important in applications. We provide convergence analysis for the value function and the exercise boundary, and derive easily computable error bounds for value iterations. As an application we develop a fast and accurate algorithm for pricing callable perpetual bonds under the CIR short rate model.
Keywords: Optimal stopping; Symmetric Hunt processes; Eigenfunction expansions; Value iterations; Callable perpetual bonds (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715213003982
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:85:y:2014:i:c:p:122-128
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2013.11.017
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().