Asymptotic properties of maximum likelihood estimator for two-step logit models
Changming Yin,
Zhanfeng Wang and
Hong Zhang
Statistics & Probability Letters, 2014, vol. 85, issue C, 135-143
Abstract:
Two-step logit models are extensions of the ordinary logistic regression model, which are designed for complex ordinal outcomes commonly seen in practice. In this paper, we establish some asymptotic properties of the maximum likelihood estimator (MLE) of the regression parameter vector under some mild conditions, which include existence of the MLE, convergence rate and asymptotic normality of the MLE. We relax the boundedness condition of the regressors required in most existing theoretical results, and all conditions are easy to verify.
Keywords: Two-step models; Ordinal data; Rate of strong consistency; Asymptotic normality (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715213003957
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:85:y:2014:i:c:p:135-143
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2013.11.014
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().