On the central limit theorem for modulus trimmed sums
Alina Bazarova,
István Berkes and
Lajos Horvath
Statistics & Probability Letters, 2014, vol. 86, issue C, 61-67
Abstract:
We prove a functional central limit theorem for modulus trimmed i.i.d. variables in the domain of attraction of a nonnormal stable law. In contrast to the corresponding result under ordinary trimming, our CLT contains a random centering factor which is inevitable in the nonsymmetric case. The proof is based on the weak convergence of a two-parameter process where one of the parameters is time and the second one is the fraction of truncation.
Keywords: Modulus trimming; Stable distribution; Iid sums; Central limit theorem (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715213004057
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:86:y:2014:i:c:p:61-67
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2013.12.006
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().