EconPapers    
Economics at your fingertips  
 

A proof of the Markov chain tree theorem

V. Anantharam and P. Tsoucas

Statistics & Probability Letters, 1989, vol. 8, issue 2, 189-192

Abstract: Let X be a finite set, P be a stochastic matrix on X, and = limn --> [infinity] (1/n)[summation operator]n-1k=0Pk. Let G = (X, E) be the weighted directed graph on X associated to P, with weights pij. An arborescence is a subset a [subset, double equals] E which has at most one edge out of every node, contains no cycles, and has maximum possible cardinality. The weight of an arborescence is the product of its edge weights. Let denote the set of all arborescences. Let ij denote the set of all arborescences which have j as a root and in which there is a directed path from i to j. Let [short parallel][short parallel], resp. [short parallel]ij[short parallel], be the sum of the weights of the arborescences in , resp. ij. The Markov chain tree theorem states that ij = [short parallel]ij[short parallel]/[short parallel][short parallel]. We give a proof of this theorem which is probabilistic in nature.

Keywords: arborescence; Markov; chain; stationary; distribution; time; reversal; tree (search for similar items in EconPapers)
Date: 1989
References: Add references at CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0167-7152(89)90016-3
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:8:y:1989:i:2:p:189-192

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:8:y:1989:i:2:p:189-192