EconPapers    
Economics at your fingertips  
 

Normal mixture quasi maximum likelihood estimation for non-stationary TGARCH(1,1) models

Hui Wang and Jiazhu Pan

Statistics & Probability Letters, 2014, vol. 91, issue C, 117-123

Abstract: Although quasi maximum likelihood estimator based on Gaussian density (G-QMLE) is widely used to estimate GARCH-type models, it does not perform successfully when error distribution is either skewed or leptokurtic. This paper proposes normal mixture quasi-maximum likelihood estimator (NM-QMLE) for non-stationary TGARCH(1,1) models. We show that, under mild regular conditions, there is no consistent estimator for the intercept, and the proposed estimator for any other parameter is consistent.

Keywords: Non-stationary TGARCH models; NM-QMLE; Consistency (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715214001205
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:91:y:2014:i:c:p:117-123

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spl.2014.03.027

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:91:y:2014:i:c:p:117-123