Shrinkage estimator in normal mean vector estimation based on conditional maximum likelihood estimators
Junyong Park
Statistics & Probability Letters, 2014, vol. 93, issue C, 1-6
Abstract:
Estimation of normal mean vector has broad applications such as small area estimation, estimation of nonparametric functions and estimation of wavelet coefficients. In this paper, we propose a new shrinkage estimator based on conditional maximum likelihood estimator incorporating with Stein’s risk unbiased estimator (SURE) when data have the normality. We present some theoretical work and provide numerical studies to compare with some existing methods.
Keywords: Shrinkage; Sparsity; Empirical Bayes; Conditional maximum likelihood estimate; Mean vector; Stein’s risk unbiased estimate (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715214002077
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:93:y:2014:i:c:p:1-6
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2014.06.005
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().