Nonparametric estimation of the spectral density of amplitude-modulated time series with missing observations
Sam Efromovich
Statistics & Probability Letters, 2014, vol. 93, issue C, 7-13
Abstract:
Consider a real-valued and second-order stationary time series with mean zero. The aim is to estimate its spectral density. A minimax solution of this problem is known when either the time series is observed directly, or some observations are missed according to an independent Bernoulli process, or for some special cases when the time series is multiplied by an amplitude-modulating time series with known distribution. It is shown that if a time series of interest, a Bernoulli time series defining missing mechanism, and an amplitude-modulating time series are mutually independent, then the shape of spectral density of an underlying time series of interest can be estimated with the minimax rate known for the case of direct observations. Furthermore, in some special cases the spectral density can be estimated with the minimax rate known for directly observed time series of interest.
Keywords: Adaptation; ARMA; Minimax; MISE; Shape (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715214002156
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:93:y:2014:i:c:p:7-13
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2014.06.013
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().