Weak convergence of the weighted sequential empirical process of some long-range dependent data
Jannis Buchsteiner
Statistics & Probability Letters, 2015, vol. 96, issue C, 170-179
Abstract:
Let (Xk)k≥1 be a Gaussian long-range dependent process with EX1=0, EX12=1 and covariance function r(k)=k−DL(k). For any measurable function G let (Yk)k≥1=(G(Xk))k≥1. We study the asymptotic behaviour of the associated sequential empirical process (RN(x,t)) with respect to a weighted sup-norm ‖⋅‖w. We show that, after an appropriate normalization, (RN(x,t)) converges weakly in the space of cádlág functions with finite weighted norm to a Hermite process.
Keywords: Sequential empirical process; Long-range dependence; Weighted norm; Modified functional delta method (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715214003423
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:96:y:2015:i:c:p:170-179
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2014.09.022
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().