Multiclass classification of the scalar Gaussian random field observation with known spatial correlation function
Kęstutis Dučinskas,
Lina Dreižienė and
Eglė Zikarienė
Statistics & Probability Letters, 2015, vol. 98, issue C, 107-114
Abstract:
Given training sample, the problem of classifying the scalar Gaussian random field observation into one of several classes specified by different regression mean models and common parametric covariance function is considered. The classifier based on the plug-in Bayes classification rule formed by replacing unknown parameters in Bayes classification rule with their ML estimators is investigated. This is the extension of the previous one from the two-class case to the multiclass case. The novel close form expressions for the actual error rate and approximation of the expected error rate incurred by proposed classifier are derived. These error rates are suggested as performance measures for the proposed classifier.
Keywords: Gaussian random field; Bayes classification rule; Pairwise discriminant function; Actual error rate; Expected error rate (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715214004118
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:98:y:2015:i:c:p:107-114
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2014.12.008
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().