Supermodular ordering of Poisson arrays
Bünyamin Kızıldemir and
Nicolas Privault
Statistics & Probability Letters, 2015, vol. 98, issue C, 136-143
Abstract:
We derive necessary and sufficient conditions for the supermodular ordering of certain triangular arrays of Poisson random variables, based on the componentwise ordering of their covariance matrices. Applications are proposed for markets driven by jump–diffusion processes, using sums of Gaussian and Poisson random vectors. Our results rely on a new triangular structure for the representation of Poisson random vectors using their Lévy–Khintchine representation.
Keywords: Stochastic ordering; Supermodular functions; Infinitely divisible random vectors; Poisson distribution; Jump–diffusion models (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715214004258
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:98:y:2015:i:c:p:136-143
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2014.12.021
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().