Dilatively semistable stochastic processes
Peter Kern and
Lina Wedrich
Statistics & Probability Letters, 2015, vol. 99, issue C, 101-108
Abstract:
Dilative semistability extends the notion of semi-selfsimilarity for infinitely divisible stochastic processes by introducing an additional scaling in the convolution exponent. It is shown that this scaling relation is a natural extension of dilative stability and some examples of dilatively semistable processes are given. We further characterize dilatively stable and dilatively semistable processes as limits for certain rescaled aggregations of independent processes.
Keywords: Dilative stability; Semi-selfsimilarity; Decomposability group; Fractional Lévy processes; Aggregation models (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715215000140
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:99:y:2015:i:c:p:101-108
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2015.01.008
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().