EconPapers    
Economics at your fingertips  
 

An innovative demand forecasting approach for the server industry

Yu-Chung Tsao, Yu-Kai Chen, Shih-Hao Chiu, Jye-Chyi Lu and Thuy-Linh Vu

Technovation, 2022, vol. 110, issue C

Abstract: Research has been conducted on approaches using social media information to improve demand forecasting accuracy in business-to-customer industries. However, such social media information is not applicable to business-to-business (B2B) industries, as a result of a lack of end-consumer evaluations. This raises a few interesting questions, including whether there may be any external information that could be used to improve B2B demand forecasting, and whether practical approaches may be possible to collect and utilize useful external business information. In this study, we develop an innovative and intelligent demand forecasting approach and apply it to a B2B server company based in the United States. We first implemented time series and machine learning models based on sales data and selected the best-fitting model as a baseline, and then used a web crawler and Google Trends to collect related market signals as external information indices for the server industry, which were finally incorporated into the selected baseline model to adjust forecasting results to account for demand fluctuations. Experimental results demonstrate that the baseline model achieved an out‐of‐sample mean squared error (MSE) of 19.77 without considering the collected external information indices, and 11.87 when external information was incorporated. Therefore, our proposed approach significantly improved forecasting accuracy, demonstrating an improvement of 63.1% in terms of MSE, 44.1% in terms of mean absolute error, and 61.2% in terms of root mean square percentage error. Thus, this study sheds light on the value of external information in demand forecasting for B2B industries.

Keywords: Demand forecasting; Machine learning; External information; Market signal; Google trends; Time series (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0166497221001528
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:techno:v:110:y:2022:i:c:s0166497221001528

DOI: 10.1016/j.technovation.2021.102371

Access Statistics for this article

Technovation is currently edited by Jonathan Linton

More articles in Technovation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:techno:v:110:y:2022:i:c:s0166497221001528