EconPapers    
Economics at your fingertips  
 

Future applications of generative large language models: A data-driven case study on ChatGPT

Filippo Chiarello, Vito Giordano, Irene Spada, Simone Barandoni and Gualtiero Fantoni

Technovation, 2024, vol. 133, issue C

Abstract: This study delves into the evolving role of generative Large Language Models (LLMs). We develop a data-driven approach to collect and analyse tasks that users are asking to generative LLMs. Thanks to the focus on tasks this paper contributes to give a quantitative and granular understanding of the potential influence of LLMs in different business areas. Utilizing a dataset comprising over 3.8 million tweets, we identify and cluster 31,747 unique tasks, with a specific case study on ChatGPT. To reach this goal, the proposed method combines two Natural Language Processing (NLP) Techniques, Named Entity Recognition (NER) and BERTopic. The combination makes it possible to collect granular tasks of LLMs (NER) and clusters them in business areas (BERTopic). Our findings reveal a wide spectrum of applications, from programming assistance to creative content generation, highlighting LLM's versatility. The analysis highlighted six emerging areas of application for ChatGPT: human resources, programming, social media, office automation, search engines, education. The study also examines the implications of these findings for innovation management, proposing a research agenda to explore the intersection of the identified areas, with four stages of the innovation process: idea generation, screening/idea selection, development, and diffusion/sales/marketing.

Keywords: Generative artificial intelligence; Generative large language models; ChatGPT; Social media analysis; Technology adoption; Emerging technologies (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016649722400052X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:techno:v:133:y:2024:i:c:s016649722400052x

DOI: 10.1016/j.technovation.2024.103002

Access Statistics for this article

Technovation is currently edited by Jonathan Linton

More articles in Technovation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:techno:v:133:y:2024:i:c:s016649722400052x