Is artificial intelligence (AI) research biased and conceptually vague? A systematic review of research on bias and discrimination in the context of using AI in human resource management
Ivan Kekez,
Lode Lauwaert and
Nina Begičević Ređep
Technology in Society, 2025, vol. 81, issue C
Abstract:
This paper presents a systematic review of 64 papers using the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) of research on bias and discrimination in the context of using Artificial Intelligence (AI). Specifically, while limiting the scope to research in HRM, it aims to answer three questions that are relevant to the research community. The first question is whether research papers define the terms 'bias' and 'discrimination', and if so how. Second, given that there are different forms of bias and discrimination, the question is exactly which ones are being investigated. Are there any forms of bias and discrimination that are underrepresented? The third question is whether a negativity bias exists in research on bias and discrimination in the context of AI. The answers to the first two questions point to some research problems. The review shows that in a substantial number of papers, the terms 'bias' and 'discrimination' are not or hardly defined. Furthermore, there is a disproportionate focus among researchers on bias and discrimination related to skin tone (racism) and gender (sexism). In the discussion, we provide reasons why this is undesirable for both scientific and extratheoretical reasons. The answer to the last question is negative. There is a relatively good balance between research that zooms in on the positive effects of AI on bias and discrimination, and research that deals with AI leading to (more) bias and discrimination.
Keywords: Artificial intelligence; Bias; Discrimination; Human resource management; Systematic review; Research (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0160791X25000089
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:teinso:v:81:y:2025:i:c:s0160791x25000089
DOI: 10.1016/j.techsoc.2025.102818
Access Statistics for this article
Technology in Society is currently edited by Charla Griffy-Brown
More articles in Technology in Society from Elsevier
Bibliographic data for series maintained by Catherine Liu ().