AI governance in the public sector: Three tales from the frontiers of automated decision-making in democratic settings
Maciej Kuziemski and
Gianluca Misuraca
Telecommunications Policy, 2020, vol. 44, issue 6
Abstract:
The rush to understand new socio-economic contexts created by the wide adoption of AI is justified by its far-ranging consequences, spanning almost every walk of life. Yet, the public sector's predicament is a tragic double bind: its obligations to protect citizens from potential algorithmic harms are at odds with the temptation to increase its own efficiency - or in other words - to govern algorithms, while governing by algorithms. Whether such dual role is even possible, has been a matter of debate, the challenge stemming from algorithms' intrinsic properties, that make them distinct from other digital solutions, long embraced by the governments, create externalities that rule-based programming lacks. As the pressures to deploy automated decision making systems in the public sector become prevalent, this paper aims to examine how the use of AI in the public sector in relation to existing data governance regimes and national regulatory practices can be intensifying existing power asymmetries. To this end, investigating the legal and policy instruments associated with the use of AI for strenghtening the immigration process control system in Canada; “optimising” the employment services” in Poland, and personalising the digital service experience in Finland, the paper advocates for the need of a common framework to evaluate the potential impact of the use of AI in the public sector. In this regard, it discusses the specific effects of automated decision support systems on public services and the growing expectations for governments to play a more prevalent role in the digital society and to ensure that the potential of technology is harnessed, while negative effects are controlled and possibly avoided. This is of particular importance in light of the current COVID-19 emergency crisis where AI and the underpinning regulatory framework of data ecosystems, have become crucial policy issues as more and more innovations are based on large scale data collections from digital devices, and the real-time accessibility of information and services, contact and relationships between institutions and citizens could strengthen – or undermine - trust in governance systems and democracy.
Keywords: Artificial intelligence; Public sector innovation; Automated decision making; Algorithmic accountability (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0308596120300689
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:telpol:v:44:y:2020:i:6:s0308596120300689
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/30471/bibliographic
http://www.elsevier. ... /30471/bibliographic
DOI: 10.1016/j.telpol.2020.101976
Access Statistics for this article
Telecommunications Policy is currently edited by Erik Bohlin
More articles in Telecommunications Policy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().