Bayesian networks and structural equation modelling to develop service quality models: Metro of Seville case study
Francisco Díez-Mesa,
Rocio de Oña and
Juan de Oña
Transportation Research Part A: Policy and Practice, 2018, vol. 118, issue C, 1-13
Abstract:
Service Quality (SQ) in Public Transport (PT) has been a crucial aspect to improve for years because of its strong influence on user satisfaction and its capacity to attract new passengers. Different techniques have been applied for analysing SQ and Structural Equation Modelling (SEM) is one of the most widely used due to its ability to address different kinds of variables and to model a whole phenomenon occurring at one time. Nevertheless, its confirmative nature requires previous knowledge, a hurdle that can be overcome by applying Bayesian Networks (BN) as a technique that learns directly from data without pre-assumptions. The aim of this paper is to apply a novel methodological approach in the field of SQ, based on a two-step process, which combines the techniques of BN and SEM, to model SQ in the Metropolitan Light Rail Transit (LRT) Service of Seville (Spain). In other words, in this paper, the proposed methodological approach has been applied to extract and confirm, directly from data and without necessity of assumptions, the possible relationships among the LRT service characteristics and how they are related with passengers’ overall SQ perception. For this purpose, firstly, a BN was automatically learnt from the data and allowed to establish relationships between SQ dimensions describing the service. SEM was then used to check the SQ model and the relationships between the dimensions extracted from the BN. The model fit parameters of SEM and its consistency with the real life expected scenario supported and validated the SQ model designed in this study. Furthermore, the different relationships among dimensions extracted from BN were analysed and support the usefulness and potential of this methodological process that could lead to the development and confirmation of new theories and models in any field of knowledge based on data and expert supervision.
Keywords: Structural equation modelling; Bayesian networks; Service quality; Public transport (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096585641731337X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transa:v:118:y:2018:i:c:p:1-13
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.tra.2018.08.012
Access Statistics for this article
Transportation Research Part A: Policy and Practice is currently edited by John (J.M.) Rose
More articles in Transportation Research Part A: Policy and Practice from Elsevier
Bibliographic data for series maintained by Catherine Liu ().